‘The Plant-Based Diet Revolution’: References and citations.

The Plant-Based Diet Revolution is not intended to be a comprehensive textbook of human nutrition. At it’s heart it is simply a healthy, plant-based cookbook. Within the introductory chapters, I carefully breakdown the scientific research that has shaped my own practice as a doctor. Every scientific statement in the book is supported by the evidence. I have therefore provided numbered references for the studies, papers, commentaries and scientific statements that inform my approach to nutrition and human health. These are the sources I used when writing the text.

Scroll down for the full list. You can access a summary or the full-text of scientific papers by searching the PubMed database, maintained by the US National Library of Medicine and the National Institutes of Health, and available without cost at pubmed.ncbi.nlm.nih.gov

Access the full nutritional information here

Leaves Tiny.png

 ‘The Plant-Based Diet Revolution: 28 Days to a Happier Gut & a Healthier You’. Scientific references and sources.



1.      Ganz ML, Sugarman R, Wang R, Hansen BB, Håkan-Bloch J. The Economic and Health-related Impact of Crohn’s Disease in the United States: Evidence from a Nationally Representative Survey. Inflamm Bowel Dis. 2016;22(5):1032–1041. doi:10.1097/MIB.0000000000000742

2.      Peyrin-Biroulet L, Loftus EV Jr, Colombel JF, Sandborn WJ. The natural history of adult Crohn’s disease in population-based cohorts. Am J Gastroenterol. 2010;105(2):289–297. doi:10.1038/ajg.2009.579

3.      Cardenas D, Let not thy food be confused with thy medicine: The Hippocratic misquotation, e-SPEN Journal (2013), http://dx.doi.org/10.1016/j.clnme.2013.10.002

4.      Burkitt DP. Some diseases characteristic of modern Western civilization.Br Med J. 1973;1(5848):274–278. doi:10.1136/bmj.1.5848.274

5.      GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958-1972. doi:10.1016/S0140-6736(19)30041-8

6.      Murray CJ, Richards MA, Newton JN, et al. UK health performance: findings of the Global Burden of Disease Study 2010.Lancet. 2013;381(9871):997–1020. doi:10.1016/S0140-6736(13)60355-4

7.      US Burden of Disease Collaborators, Mokdad AH, Ballestros K, et al. The State of US Health, 1990-2016: Burden of Diseases, Injuries, and Risk Factors Among US States.JAMA. 2018;319(14):1444–1472. doi:10.1001/jama.2018.0158

8.      Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems Lancet. 2019;393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4

9.      Health Canada. (2019) ‘Canada’s food guide resources’. Government of Canada [data file]. Retrieved fromhttps://food-guide.canada.ca/en/food-guide-snapshot Accessed 07 March 2020

10.  British Dietetic Association Aug 2017. ‘British Dietetic Association confirms well-planned vegan diets can support healthy living in people of all ages’. Available at https://www.bda.uk.com/resource/british-dietetic-association-confirms-well-planned-vegan-diets-can-support-healthy-living-in-people-of-all-ages.html Accessed 13 June 2020

11.   Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Nutr Diet. 2016;116(12):1970‐1980. doi:10.1016/j.jand.2016.09.025

12.  Rock CL, Thomson C, Gansler T, et al. American Cancer Society guideline for diet and physical activity for cancer prevention [published online ahead of print, 2020 Jun 9]. CA Cancer J Clin. 2020;10.3322/caac.21591. doi:10.3322/caac.21591Health Canada, 2019. ‘Canada’s food guide resources’. Government of Canada [data file]. https://food-guide.canada.ca/en/food-guide-snapshot Accessed 07 March 2020 World Health Organisation, Dec 2018. ‘A healthy diet sustainably produced’. 31 Dec 2018. https://www.who.int/publications/i/item/WHO-NMH-NHD-18.12 Accessed 13 Jun 2020

13.  American College of Lifestyle Medicine, March 2018. ‘American College of Lifestyle Medicine Calls for Inclusion of Whole Food, Plant-Based Recommendations in New U.S. Dietary Guidelines’. http://www.prweb.com/releases/2018/03/prweb15288893.htm Accessed 13 Jun 2020

14.  Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems Lancet. 2019;393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4

15.  Health Canada. (2019) ‘Canada’s food guide resources’. Government of Canada [data file]. Retrieved from https://food-guide.canada.ca/en/food-guide-snapshot Accessed 07 March 2020

16.  U.S. Trends in Food Availability and a Dietary Assessment of Loss-Adjusted Food Availability, 1970-2014, EIB-166 USDA, Economic Research Service. https://www.ers.usda.gov/webdocs/publications/82220/eib-166.pdf?v=42762%20 Accessed 10 March 2020

17.  Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS) National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2015-2016. https://wwwn.cdc.gov/nchs/nhanes/ConcanuousNhanes/Default.aspx?BeginYear=2015 Accessed 10 March 2020

18.  Daniel CR, Cross AJ, Koebnick C, Sinha R. Trends in meat consumption in the USA. Public Health Nutr. 2011;14(4):575–583. doi:10.1017/S1368980010002077

19.  USDA Economic Research Service. ‘Per Capita Red Meat and Poultry Disappearance: Insights Into Its Steady Growth’ https://www.ers.usda.gov/amber-waves/2018/june/per-capita-red-meat-and-poultry-disappearance-insights-into-its-steady-growth/ Accessed 10 March 2020

20.  National Diet and Nutrition Survey. Results from Years 7-8 (combined) of the Rolling Programme (2014/15 to 2015/16) Public Health England 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/699241/NDNS_results_years_7_and_8.pdf Accessed 08 March 2020

21.  European Union Fruit and vegetable consumption statistics March 2018. https://ec.europa.eu/eurostat/statistics-explained/pdfscache/68501.pdf Accessed 29 Aug 2020

22.  Statement by Dr Alison Tedstone, chief nutritionist, Public Health England. Source: https://www.gov.uk/government/news/phe-publishes-latest-data-on-nations-diet Accessed 03 March 2020

23.  Clarys P, Deliens T, Huybrechts I, et al. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients. 2014;6(3):1318–1332. Published 2014 Mar 24. doi:10.3390/nu6031318

24.  Schwingshackl L, Bogensberger B, Hoffmann G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies.J Acad Nutr Diet. 2018;118(1):74–100.e11. doi:10.1016/j.jand.2017.08.024

25.  Peterson MC, Holbrook JH, Von Hales D, Smith NL, Staker LV. Contributions of the history, physical examination, and laboratory investigation in making medical diagnoses. West J Med. 1992;156(2):163-165.

26.  Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2.JAMA Intern Med. 2013;173(13):1230–1238. doi:10.1001/jamainternmed.2013.6473

27.  Satija A, Bhupathiraju SN, Rimm EB, et al. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies.PLoS Med. 2016;13(6):e1002039. Published 2016 Jun 14. doi:10.1371/journal.pmed.1002039

28.  Satija A, Bhupathiraju SN, Spiegelman D, et al. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary HeartDisease in U.S. Adults.J Am Coll Cardiol. 2017;70(4):411–422. doi:10.1016/j.jacc.2017.05.047

29.  Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems [published correction appears in Lancet. 2019 Feb 9;393(10171):530] [published correction appears in Lancet. 2019 Jun 29;393(10191):2590] [published correction appears in Lancet. 2020 Feb 1;395(10221):338].Lancet. 2019;393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4

30.  Kim H, Caulfield LE, Rebholz CM. Healthy Plant-Based Diets Are Associated with Lower Risk of All-Cause Mortality in US Adults.J Nutr. 2018;148(4):624–631. doi:10.1093/jn/nxy019

31.  Virtanen HEK, Voutilainen S, Koskinen TT, et al. Dietary proteins and protein sources and risk of death: the Kuopio Ischaemic Heart Disease Risk Factor Study.Am J Clin Nutr. 2019;109(5):1462–1471. doi:10.1093/ajcn/nqz025

32.  GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.Lancet. 2019;393(10184):1958–1972. doi:10.1016/S0140-6736(19)30041-8

33.  Guasch-Ferré M, Satija A, Blondin SA, et al. Meta-Analysis of Randomized Controlled Trials of Red Meat Consumption in Comparison With Various Comparison Diets on Cardiovascular Risk Factors.Circulation. 2019;139(15):1828–1845. doi:10.1161/CIRCULATIONAHA.118.035225

34.  Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies [published online ahead of print, 2020 Feb 19].Eur J Epidemiol. 2020;10.1007/s10654-020-00607-6. doi:10.1007/s10654-020-00607-6

35.  Farmer B, Larson BT, Fulgoni VL 3rd, Rainville AJ, Liepa GU. A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the national health and nutrition examination survey 1999-2004.J Am Diet Assoc. 2011;111(6):819–827. doi:10.1016/j.jada.2011.03.012

36.  Sobiecki JG, Appleby PN, Bradbury KE, Key TJ. High compliance with dietary recommendations in a cohor of meat eaters, fish eaters, vegetarians, and vegans: results from the European Prospective Investigation into Cancer and Nutrition-Oxford study.Nutr Res. 2016;36(5):464–477. doi:10.1016/j.nutres.2015.12.016

37.  Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014;68(9):856–862. doi:10.1136/jech-2013-203500

38.  Freeman AM, Morris PB, Barnard N, et al. Trending Cardiovascular Nutrition Controversies [published correction appears in J Am Coll Cardiol. 2017 Apr 18;69(15):1997]. J Am Coll Cardiol. 2017;69(9):1172-1187. doi:10.1016/j.jacc.2016.10.086

39.  Carson JAS, Lichtenstein AH, Anderson CAM, et al. Dietary Cholesterol and Cardiovascular Risk: A Science Advisory From the American Heart Association. Circulation. 2020;141(3):e39-e53. doi:10.1161/CIR.0000000000000743

40.  Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of Health Survey for England data. J Epidemiol Community Health. 2014;68(9):856–862. doi:10.1136/jech-2013-203500

41.  Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis.Am J Clin Nutr. 2014;100(1):278–288. doi:10.3945/ajcn.113.076901

42.  Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts.N Engl J Med. 2018;378(25):e34. doi:10.1056/NEJMoa1800389

43.  Kushi LH, Meyer KA, Jacobs DR Jr. Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies.Am J Clin Nutr. 1999;70(3 Suppl):451S–458S. doi:10.1093/ajcn/70.3.451s

44.  Sabaté J, Oda K, Ros E. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials.Arch Intern Med. 2010;170(9):821–827. doi:10.1001/archinternmed.2010.79

45.  Grosso G, Estruch R. Nut consumption and age-related disease. Maturitas. 2016;84:11–16. doi:10.1016/j.maturitas.2015.10.014

46.  Mayhew AJ, de Souza RJ, Meyre D, Anand SS, Mente A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality.Br J Nutr. 2016;115(2):212–225. doi:10.1017/S0007114515004316

47.  Bao Y, Han J, Hu FB, et al. Association of nut consumption with total and cause-specific mortality.N Engl J Med. 2013;369(21):2001–2011. doi:10.1056/NEJMoa1307352

48.  Aune D, Keum N, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies.BMC Med. 2016;14(1):207. Published 2016 Dec 5. doi:10.1186/s12916-016-0730-3

49.  Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC. Major dietary protein sources and risk of coronary heart disease in women. Circulation. 2010;122(9):876–883. doi:10.1161/CIRCULATIONAHA.109.915165

50.  Lee SA, Shu XO, Li H, et al. Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women’s Health Study. Am J Clin Nutr. 2009;89(6):1920–1926. doi:10.3945/ajcn.2008.27361

51.  Zong G, Gao A, Hu FB, Sun Q. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation. 2016;133(24):2370–2380. doi:10.1161/CIRCULATIONAHA.115.021101

52.  Schwingshackl L, Christoph M, Hoffmann G. Effects of olive oil on markers of inflammation and endothelial function: a systematic review and meta-analysis. Nutrients 2015;7:7651–75.

53.  Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 2014;13:154.

54.  Guasch-Ferré M, Hruby A, Salas-Salvadó J, et al. Olive oil consumption and risk of type 2 diabetes in US women. Am J Clin Nutr 2015;102: 479–86.

55.  Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts .N Engl J Med. 2018;378(25):e34. doi:10.1056/NEJMoa1800389

56.  Jiang TA. Health Benefits of Culinary Herbs and Spices. J AOAC Int. 2019;102(2):395–411. doi:10.5740/jaoacint.18-0418

57.  Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets.J Acad Nutr Diet. 2016;116(12):1970–1980. doi:10.1016/j.jand.2016.09.025

58.  Adherence to a Mediterranean diet by vegetarians and vegans as compared to omnivores. Avital K, et al. Int J Food Sci Nutr. 2019 Sep 26:1-10

59.  Clark MA, Springmann M, Hill J, Tilman D. Multiple health and environmental impacts of foods. Proc Natl Acad Sci U S A. 2019;116(46):23357‐23362. doi:10.1073/pnas.1906908116

60.  Environmental Working Group’s 2020 Shopper’s Guide to Pesticides in Produce™ https://www.ewg.org/foodnews/summary.php Accessed 26 April 2020

61.  Murray CJ, Richards MA, Newton JN, et al. UK health performance: findings of the Global Burden of Disease Study 2010. Lancet. 2013;381(9871):997–1020. doi:10.1016/S0140-6736(13)60355-4

62.  Rauber F, Louzada MLDC, Marcanez Steele E, et al. Ultra-processed foods and excessive free sugar intake in the UK: a nationally representative cross-sectional study. BMJ Open. 2019;9(10):e027546. Published 2019 Oct 28. doi:10.1136/bmjopen-2018-027546

63.  Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. Published 2016 Jun 14. doi:10.1136/bmj.i2716

64.  Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010;153(5):289–298. doi:10.7326/0003-4819-153-5-201009070-00003

65.  Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018;3(9):e419–e428. doi:10.1016/S2468-2667(18)30135-X

66.  Churuangsuk C, Lean MEJ, Combet E. Lower carbohydrate and higher fat intakes are associated with higher hemoglobin A1c: findings from the UK National Diet and Nutrition Survey 2008-2016 [published online ahead of print, 2019 Nov 4]. Eur J Nutr. 2019;10.1007/s00394-019-02122-1. doi:10.1007/s00394-019-02122-1

67.  Kahleova H, Dort S, Holubkov R, Barnard ND. A Plant-Based High-Carbohydrate, Low-Fat Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: The Role of Carbohydrates. Nutrients. 2018;10(9):1302. Published 2018 Sep 14. doi:10.3390/nu10091302

68.  Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5(5):765–775. doi:10.1111/1758-2229.12079

69.  Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and nonvegetarian dietary patterns.J Acad Nutr Diet. 2013;113(12):1610–1619. doi:10.1016/j.jand.2013.06.349

70.  Khalili H, Håkansson N, Chan SS, et al. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: results from two large prospective cohort studies [published online ahead of print, 2020 Jan 3].Gut. 2020;gutjnl-2019-319505. doi:10.1136/gutjnl-2019-319505

71.  Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies [published online ahead of print, 2020 Feb 19]. Eur J Epidemiol. 2020;10.1007/s10654-020-00607-6. doi:10.1007/s10654-020-00607-6

72.  Relation of Meat, fat, and Fiber Intake to the risk of colon cancer in a prospective study among women. Walter Willett NEJM 1990

73.   Bradbury KE, Murphy N, Key TJ. Diet and colorectal cancer in UK Biobank: a prospective study. Int J Epidemiol. 2020;49(1):246-258. doi:10.1093/ije/dyz064

74.  Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and the risk of colorectal cancers. J AMA Intern Med. 2015;175(5):767–776. doi:10.1001/jamainternmed.2015.59

75.  Manousos O, Day NE, Trichopoulos D, Gerovassilis F, Tzonou A, Polychronopoulou A. Diet and colorectal cancer: a case-control study in Greece. Int J Cancer. 1983;32(1):1‐5. doi:10.1002/ijc.2910320102

76.  Kahleova H, Dort S, Holubkov R, Barnard ND. A Plant-Based High-Carbohydrate, Low-Fat Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: The Role of Carbohydrates. Nutrients. 2018;10(9):1302. Published 2018 Sep 14. doi:10.3390/nu10091302

77.  Kahleova H, Fleeman R, Hlozkova A, Holubkov R, Barnard ND. A plant-based diet in overweight individuals in a 16-week randomized clinical trial: metabolic benefits of plant protein. Nutr Diabetes. 2018;8(1):58. Published 2018 Nov 2. doi:10.1038/s41387-018-0067-4

78.  Pan A, Sun Q, Bernstein AM, Manson JE, Willett WC, Hu FB. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med. 2013;173(14):1328–1335. doi:10.1001/jamainternmed.2013.6633

79.  Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence. Curr Atheroscler Rep. 2012;14(6):515–524. doi:10.1007/s11883-012-0282-8

80.  Aune D, Ursin G, Veierød MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia. 2009;52(11):2277–2287. doi:10.1007/s00125-009-1481-x

81.  InterAct Consortium, Bendinelli B, Palli D, et al. Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia. 2013;56(1):47–59. doi:10.1007/s00125-012-2718-7

82.  McMacken M, Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J Geriatr Cardiol. 2017;14(5):342–354. doi:10.11909/j.issn.1671-5411.2017.05.009

83.  Yang X, Li Y, Wang C, et al. Meat and fish intake and type 2 diabetes: dose-response meta-analysis of prospective cohort studies [published online ahead of print, 2020 Apr 14]. Diabetes Metab. 2020;S1262-3636(20)30055-0. doi:10.1016/j.diabet.2020.03.004

84.  David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome.Nature. 2014;505(7484):559–563. doi:10.1038/nature12820

85.  Koeth RA, Lam-Galvez BR, Kirsop J, et al. l-Carnicane in omnivorous diets induces an atherogenic gut microbial pathway in humans.J Clin Invest. 2019;129(1):373–387. doi:10.1172/JCI94601

86.  Park JE, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019;29(5):513–517. doi:10.1016/j.numecd.2019.02.003

87.  Herbert V. Vitamin B-12: plant sources, requirements, and assay. Am J Clin Nutr. 1988;48(3 Suppl):852–858. doi:10.1093/ajcn/48.3.852

88.  Daisley, K. W., (1969), Monthly survey of Vitamin B12 concentrations in some waters of the English lake District,Limnology and Oceanography,14, doi: 10.4319/lo.1969.14.2.0224.

89.  Lindsay H Allen, How common is vitamin B-12 deficiency?, The American Journal of Clinical Nutrition, Volume 89, Issue 2, February 2009, Pages 693S–696S,https://doi.org/10.3945/ajcn.2008.26947A

90.  Gallego-Narbón A, Zapatera B, Álvarez I, Vaquero MP. Methylmalonic Acid Levels and their Relation with Cobalamin Supplementation in Spanish Vegetarians.Plant Foods Hum Nutr. 2018;73(3):166–171. doi:10.1007/s11130-018-0677-y

91.  Nebl J, Schuchardt JP, Ströhle A, et al. Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns.Nutrients. 2019;11(5):1146. Published 2019 May 22. doi:10.3390/nu11051146

92.  Hill MH, Flatley JE, Barker ME, et al. A vitamin B-12 supplement of 500 μg/d for eight weeks does not normalize urinary methylmalonic acid or other biomarkers of vitamin B-12 status in elderly people with moderately poor vitamin B-12 status.J Nutr. 2013;143(2):142–147. doi:10.3945/jn.112.169193

93.  Public Health England. National Diet and Nutrition Survey. Results from Years 7-8 (combined) of the Rolling Programme (2014/15 to 2015/16) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/699241/NDNS_results_years_7_and_8.pdf Accessed 17 March 2020

94.  Willett WC, Ludwig DS. Milk and Health. N Engl J Med. 2020;382(7):644–654. doi:10.1056/NEJMra1903547

95.  Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738‐746. doi:10.1016/S2468-1253(17)30154-1

96.  Kimball SM, Holick MF. Official recommendations for vitamin D through the life stages in developed countries [published online ahead of print, 2020 Aug 20]. Eur J Clin Nutr. 2020;10.1038/s41430-020-00706-3. doi:10.1038/s41430-020-00706-3

97.  Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70 Suppl 1(Suppl 1):S38–S44. doi:10.1111/j.1753-4887.2012.00493.x

98.  Crowther TW, Glick HB, Covey KR, et al. Mapping tree density at a global scale [published correction appears in Nature. 2016 Apr 14;532(7598):268]. Nature. 2015;525(7568):201-205. doi:10.1038/nature14967

99.  Masetti M. How Many Stars in the Milky Way? NASA Blueshift. 2015. https://asd.gsfc.nasa.gov/blueshift/index.php/2015/07/22/how-many-stars-in-the-milky-way/ Accessed 10 March 2020

100.                      Dong TS, Gupta A. Influence of Early Life, Diet, and the Environment on the Microbiome.Clin Gastroenterol Hepatol. 2019;17(2):231–242. doi:10.1016/j.cgh.2018.08.067

101.                      Pannaraj PS, Li F, Cerini C, et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome.JAMA Pediatr. 2017;171(7):647–654. doi:10.1001/jamapediatrics.2017.0378

102.                      Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–8803. doi:10.3748/wjg.v21.i29.8787

103.                      Farré-Maduell E, Casals-Pascual C. The origins of gut microbiome research in Europe: From Escherich to Nissle. Human Microbiome Journal. 2019 https://doi.org/10.1016/j.humic.2019.100065

104.                      Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779–786. doi:10.1016/j.cmet.2014.07.003

105.                      David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome.Nature. 2014;505(7484):559–563. doi:10.1038/nature12820

106.                      Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates .Cell Metab. 2014;20(5):779–786. doi:10.1016/j.cmet.2014.07.003

107.                      Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–1725. doi:10.1136/gutjnl-2018-316723

108.                      De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691‐14696. doi:10.1073/pnas.1005963107

109.                      Dong TS, Gupta A. Influence of Early Life, Diet, and the Environment on the Microbiome. Clin Gastroenterol Hepatol. 2019;17(2):231–242. doi:10.1016/j.cgh.2018.08.067

110.                      Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–1725. doi:10.1136/gutjnl-2018-316723

111.                      American Gut: an Open Platform for Citizen Science Microbiome Research.mSystems. 2018;3(3):e00031-18. Published 2018 May 15. doi:10.1128/mSystems.00031-18

112.                      World Economic Forum. Jan 2016. Why do we consume only a tiny fraction of the world’s edible plants? https://www.weforum.org/agenda/2016/01/why-do-we-consume-only-a-cany-fraction-of-the-world-s-edible-plants Accessed 16 Jun 2020

113.                      Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–108. doi:10.1126/science.1208344

114.                      Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220‐230. doi:10.1038/nature11550

115.                      Popovich DG, Jenkins DJ, Kendall CW, et al. The western lowland gorilla diet has implications for the health of humans and other hominoids. J Nutr. 1997;127(10):2000-2005. doi:10.1093/jn/127.10.2000

116.                      Hicks AL, Lee KJ, Couto-Rodriguez M, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9(1):1786. Published 2018 May 3. doi:10.1038/s41467-018-04204-w

117.                      Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–108. doi:10.1126/science.1208344

118.                      Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220‐230. doi:10.1038/nature11550

119.                      De Angelis M, Ferrocino I, Calabrese FM, et al. Diet influences the functions of the human intestinal microbiome. Sci Rep. 2020;10(1):4247. Published 2020 Mar 6. doi:10.1038/s41598-020-61192-y

120.                      Wong MW, Yi CH, Liu TT, et al. Impact of vegan diets on gut microbiota: An update on the clinical implications. Ci Ji Yi Xue Za Zhi. 2018;30(4):200–203. doi:10.4103/tcmj.tcmj_21_18

121.                      Tomova A, Bukovsky I, Rembert E, et al. The Effects of Vegetarian and Vegan Diets on Gut Microbiota.Front Nutr. 2019;6:47. Published 2019 Apr 17. doi:10.3389/fnut.2019.00047

122.                      Smits LP, Kootte RS, Levin E, et al. Effect of Vegan Fecal Microbiota Transplantation on Carnicane- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome. J Am Heart Assoc. 2018;7(7):e008342. Published 2018 Mar 26. doi:10.1161/JAHA.117.008342

123.                      McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18. Published 2018 May 15. doi:10.1128/mSystems.00031-18

124.                      Smith RP, Easson C, Lyle SM, et al. Gut microbiome diversity is associated with sleep physiology in humans.P LoS One. 2019;14(10):e0222394. Published 2019 Oct 7. doi:10.1371/journal.pone.0222394

125.                      S. F. Clarke, E. F. Murphy, O. O’Sullivan, A. J. Lucey, M. Humphreys, A. Hogan, P. Hayes, M. O’Reilly, I. B. Jeffery, R. Wood-Marcan, D. M. Kerins, E. Quigley, R. P. Ross, P. W. O’Toole, M. G. Molloy, E. Falvey, F. Shanahan, P. D. Cotter. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014; DOI:10.1136/gutjnl-2013-306541

126.                      Monda V, Villano I, Messina A, et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid Med Cell Longev. 2017;2017:3831972. doi:10.1155/2017/3831972

127.                      Mills JG, Brookes JD, Gellie NJC, et al. Relating Urban Biodiversity to Human Health With the ‘Holobiont’ Concept. Front Microbiol. 2019;10:550. Published 2019 Mar 26. doi:10.3389/fmicb.2019.00550

128.                      De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–14696. doi:10.1073/pnas.1005963107

129.                      Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011;9(4):233‐243. doi:10.1038/nrmicro2536

130.                      Martínez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study.BMJ Open. 2016;6(3):e009892. Published 2016 Mar 9. doi:10.1136/bmjopen-2015-009892

131.                       Rauber F, Louzada MLDC, Marcanez Steele E, et al. Ultra-processed foods and excessive free sugar intake in the UK: a nationally representative cross-sectional study.BMJ Open. 2019;9(10):e027546. Published 2019 Oct 28. doi:10.1136/bmjopen-2018-027546

132.                      Nickerson KP, Chanin R, McDonald C. Deregulation of intescanal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes. 2015;6(1):78–83. doi:10.1080/19490976.2015.1005477

133.                      Roberts CL, Rushworth SL, Richman E, Rhodes JM. Hypothesis: Increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease. J Crohns Colitis. 2013;7(4):338–341. doi:10.1016/j.crohns.2013.01.004

134.                      Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One. 2012;7(12):e52132. doi:10.1371/journal.pone.0052132

135.                      Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr. 1996;63(5):741–745. doi:10.1093/ajcn/63.5.741

136.                      Viennois E, Chassaing B. First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? [published online ahead of print, 2018 Feb 13]. Gut Microbes. 2018;9(3):1-4. doi:10.1080/19490976.2017.1421885

137.                      Minihane AM, Vinoy S, Russell WR, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114(7):999–1012. doi:10.1017/S0007114515002093

138.                      Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study.Am J Gastroenterol. 2010;105(10):2195–2201. doi:10.1038/ajg.2010.192

139.                      Marcanez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014;63(1):116–124. doi:10.1136/gutjnl-2012-304119

140.                      de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G440–G448. doi:10.1152/ajpgi.00098.2010

141.                      Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012;487(7405):104–108. doi:10.1038/nature11225

142.                      David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820

143.                      Chai W, Morimoto Y, Cooney RV, et al. Dietary Red and Processed Meat Intake and Markers of Adiposity and Inflammation: The Multiethnic Cohort Study. J Am Coll Nutr. 2017;36(5):378-385. doi:10.1080/07315724.2017.1318317

144.                      Shivappa N, Godos J, Hébert JR, et al. Dietary Inflammatory Index and Cardiovascular Risk and Mortality-A Meta-Analysis. Nutrients. 2018;10(2):200. Published 2018 Feb 12. doi:10.3390/nu10020200

145.                      Hruby A, Jacques PF. Dietary Protein and Changes in Biomarkers of Inflammation and Oxidative Stress in the Framingham Heart Study Offspring Cohort. Curr Dev Nutr. 2019;3(5):nzz019. Published 2019 Mar 28. doi:10.1093/cdn/nzz019

146.                      Silveira BKS, Oliveira TMS, Andrade PA, Hermsdorff HHM, Rosa COB, Franceschini SDCC. Dietary Pattern and Macronutrients Profile on the Variation of Inflammatory Biomarkers: Scientific Update [published correction appears in Cardiol Res Pract. 2018 Dec 16;2018:9830287]. Cardiol Res Pract. 2018;2018:4762575. Published 2018 Mar 14. doi:10.1155/2018/4762575

147.                      David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820

148.                      Minihane AM, Vinoy S, Russell WR, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114(7):999–1012. doi:10.1017/S0007114515002093

149.                      Turner-McGrievy GM, Wirth MD, Shivappa N, et al. Randomization to plant-based dietary approaches leads to larger short-term improvements in Dietary Inflammatory Index scores and macronutrient intake compared with diets that contain meat. Nutr Res. 2015;35(2):97–106. doi:10.1016/j.nutres.2014.11.007

150.                      Craddock JC, Neale EP, Peoples GE, Probst YC. Vegetarian-Based Dietary Patterns and their Relation with Inflammatory and Immune Biomarkers: A Systematic Review and Meta-Analysis. Adv Nutr. 2019;10(3):433–451. doi:10.1093/advances/nmy103

151.                      Lederer AK, Maul-Pavicic A, Hannibal L, et al. Vegan diet reduces neutrophils, monocytes and platelets related to branched-chain amino acids – A randomized, controlled trial [published online ahead of print, 2020 Feb 24]. Clin Nutr. 2020;S0261-5614(20)30059-5. doi:10.1016/j.clnu.2020.02.011

152.                      Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.Lancet. 2018;390(10114):2769–2778. doi:10.1016/S0140-6736(17)32448

153.                      Nickerson KP, Chanin R, McDonald C. Deregulation of intescanal anti-microbial defense by the dietary additive, maltodextrin.Gut Microbes. 2015;6(1):78–83. doi:10.1080/19490976.2015.1005477

154.                      Roberts CL, Rushworth SL, Richman E, Rhodes JM. Hypothesis: Increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease.J Crohns Colitis. 2013;7(4):338–341. doi:10.1016/j.crohns.2013.01.004

155.                      Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin.PLoS One. 2012;7(12):e52132. doi:10.1371/journal.pone.0052132

156.                      Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan.Am J Clin Nutr. 1996;63(5):741–745. doi:10.1093/ajcn/63.5.741

157.                      Roberts CL, Keita AV, Duncan SH, et al. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers.Gut. 2010;59(10):1331–1339. doi:10.1136/gut.2009.195370

158.                      Khalili H, Håkansson N, Chan SS, et al. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: results from two large prospective cohort studies [published online ahead of print, 2020 Jan 3]. Gut. 2020;gutjnl-2019-319505. doi:10.1136/gutjnl-2019-319505

159.                      Albenberg L, Brensinger CM, Wu Q, et al. A Diet Low in Red and Processed Meat Does Not Reduce Rate of Crohn’s Disease Flares. Gastroenterology. 2019;157(1):128–136.e5. doi:10.1053/j.gastro.2019.03.015

160.                      Chiba M, Abe T, Tsuda H, et al. Lifestyle-related disease in Crohn’s disease: relapse prevention by a semi-vegetarian diet. World J Gastroenterol. 2010;16(20):2484–2495. doi:10.3748/wjg.v16.i20.2484

161.                      Chiba M, Tsuda S, Komatsu M, Tozawa H, Takayama Y. Onset of Ulcerative Colitis during a Low-Carbohydrate Weight-Loss Diet and Treatment with a Plant-Based Diet: A Case Report. The Permanente Journal. 2016 ;20(1):80-84. DOI: 10.7812/TPP/15-038.

162.                      Sigall-Boneh R, Pfeffer-Gik T, Segal I, Zangen T, Boaz M, Levine A. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease.Inflamm Bowel Dis. 2014;20(8):1353–1360. doi:10.1097/MIB.0000000000000110

163.                      Sigall Boneh R, Sarbagili Shabat C, Yanai H, et al. Dietary Therapy With the Crohn’s Disease Exclusion Diet is a Successful Strategy for Induction of Remission in Children and Adults Failing Biological Therapy.J Crohns Colitis. 2017;11(10):1205–1212. doi:10.1093/ecco-jcc/jjx071

164.                      Sandefur K, Kahleova H, Desmond AN, Elfrink E, Barnard ND. Crohn’s Disease Remission with a Plant-Based Diet: A Case Report. Nutrients. 2019;11(6):1385. Published 2019 Jun 20. doi:10.3390/nu11061385

165.                      Chiba M, Tsuji T, Nakane K, et al. Induction with Infliximab and a Plant-Based Diet as First-Line (IPF) Therapy for Crohn Disease: A Single-Group Trial. Perm J. 2017;21:17–19. doi:10.7812/TPP/17-009

166.                      Levine A, Rhodes JM, Lindsay JO, et al. Dietary Guidance From the International Organization for the Study of Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 2020;18(6):1381-1392. doi:10.1016/j.cgh.2020.01.046

167.                      Levenstein S, Prantera C, Luzi C, D’Ubaldi A. Low residue or normal diet in Crohn’s disease: a prospective controlled study in Italian patients. Gut. 1985;26(10):989–993. doi:10.1136/gut.26.10.989

168.                      Ritchie JK, Wadsworth J, Lennard-Jones JE, Rogers E. Controlled multicentre therapeutic trial of an unrefined carbohydrate, fibre rich diet in Crohn’s disease. Br Med J. (Clin Res Ed) 1987;295(6597):517–520. doi:10.1136/bmj.295.6597.517

169.                      Brotherton CS, Taylor AG. Dietary fiber information for individuals with Crohn disease: reports of gastrointescanal effects. Gastroenterol Nurs. 2013;36(5):320–327. doi:10.1097/SGA.0b013e3182a67a9a

170.                      National Diet and Nutrition Survey. Results from Years 7-8 (combined) of the Rolling Programme (2014/15 to 2015/16). Public Health England 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/699241/NDNS_results_years_7_and_8.pdf Accessed 08 March 2020

171.                      National Diet and Nutrition Survey. Results from Years 5-9 of the Rolling Programme (2012/13-2016/17). https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-ndns-rp-results-for-years-5-to-9-combined-of-the-rolling-programme-for-northern-ireland-201213-201617-an. Accessed 5 March 2020

172.                      U.S. Trends in Food Availability and a Dietary Assessment of Loss-Adjusted Food Availability, 1970-2014, EIB-166 USDA, Economic Research Service. https://www.ers.usda.gov/webdocs/publications/82220/eib-166.pdf?v=42762%20 Accessed 10 March 2020

173.                      Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS) National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2015-2016. https://wwwn.cdc.gov/nchs/nhanes/ConcanuousNhanes/Default.aspx?BeginYear=2015 Accessed 10 March 2020

174.                      Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis.Clin Gastroenterol Hepatol. 2012;10(7):712–721.e4. doi:10.1016/j.cgh.2012.02.029

175.                      Frändemark Å, Törnblom H, Jakobsson S, Simrén M. Work Productivity and Activity Impairment in Irritable Bowel Syndrome (IBS): A Multifaceted Problem.Am J Gastroenterol. 2018;113(10):1540–1549. doi:10.1038/s41395-018-0262-x

176.                      Buono JL, Carson RT, Flores NM. Health-related quality of life, work productivity, and indirect costs among patients with irritable bowel syndrome with diarrhea.Health Qual Life Outcomes. 2017;15(1):35. Published 2017 Feb 14. doi:10.1186/s12955-017-0611-2

177.                      Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome.Lancet Gastroenterol Hepatol. 2016;1(2):133–146. doi:10.1016/S2468-1253(16)30023-1

178.                      Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis.Clin Gastroenterol Hepatol. 2012;10(7):712–721.e4. doi:10.1016/j.cgh.2012.02.029

179.                      Ferlay J,et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11.Lyon, France:I nternational Agency for Research on Cancer, 2013.

180.                      Lifetime risk estimates calculated by the Statistical Information Team at Cancer Research UK. Based on Office for National Statistics (ONS) 2016-based Life expectancies and population projections. Accessed December 2017, and Smittenaar CR, Petersen KA, Stewart K, Moitt N.Cancer Incidence and Mortality Projections in the UK Until 2035. Brit J Cancer 2016.

181.                      O’Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans.Nat Commun. 2015;6:6342. Published 2015 Apr 28. doi:10.1038/ncomms7342

182.                      Relation of Meat, fat, and Fiber Intake to the risk of colon cancer in a prospective study among women. Walter Willett NEJM 1990

183.                      Bradbury KE, Murphy N, Key TJ. Diet and colorectal cancer in UK Biobank: a prospective study. Int J Epidemiol. 2020;49(1):246-258. doi:10.1093/ije/dyz064

184.                      Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and the risk of colorectal cancers.JAMA Intern Med. 2015;175(5):767–776. doi:10.1001/jamainternmed.2015.59

185.                      Manousos O, Day NE, Trichopoulos D, Gerovassilis F, Tzonou A, Polychronopoulou A. Diet and colorectal cancer: a case-control study in Greece. Int J Cancer. 1983;32(1):1‐5. doi:10.1002/ijc.2910320102

186.                      Sinha R, Rothman N, Brown ED, Mark SD, Hoover RN, et al. Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans.Cancer Res.1994;54:6154–6159.

187.                      Bingham SA, Hughes R, Cross AJ. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response.JNutr.2002;132:3522S–3525S

188.                      Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intescanal N-nitrosation arising from red meat.Cancer Res.2003;63:2358–2360.

189.                      Bonnett R, Charalambides AA, Marcan RA, Sales KD, Fitzsimmons BW. Reactions of nitrous acid and nitric oxide with porphyrins and haems. Nitrosylhaems as nitrosating agents.JChem Soc Chem Commun.1975;884-885

190.                      Joosen AM, Kuhnle GG, Aspinall SM, Barrow TM, Lecommandeur E, et al. Effect of processed and red meat on endogenous nitrosation and DNA damage.Carcinogenesis.2009;30:1402–1407.

191.                      IARC/WHO Press Release no 240. IARC monographs evaluate consumption of red meat and processed meat. October 2015. https://www.iarc.fr/wp-content/uploads/2018/07/pr240_E.pdf

192.                      Bouvard V, Loomis D, Guyton KZ, et al. Carcinogenicity of consumption of red and processed meat.Lancet Oncol. 2015;16(16):1599–1600. doi:10.1016/S1470-2045(15)00444-1

193.                      Thomas, A.M., Manghi, P., Asnicar, F.et al.Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation.Nat Med25,667–678 (2019) https://doi.org/10.1038/s41591-019-0405-7

194.                      Wirbel, J., Pyl, P.T., Kartal, E.et al.Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer.Nat Med25,679–689 (2019) https://doi.org/10.1038/s41591-019-0406-6

195.                      O’Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans.Nat Commun. 2015;6:6342. Published 2015 Apr 28. doi:10.1038/ncomms7342

196.                      Vuik FE, Nieuwenburg SA, Bardou M, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut. 2019;68(10):1820-1826. doi:10.1136/gutjnl-2018-317592

197.                      Cancer Research UK, https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer/risk-factors, Accessed 22 Feb 2020

198.                      LiQ, HolfordTR, ZhangY, BoyleP, MayneST, et al. Dietary fiber intake and risk of breast cancer by menopausal and estrogen receptor status. Eur J Nutr 2013;52:217-23.

199.                      HoweGR, HirohataT, HislopTG, IscovichJM, YuanJM, et al. Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J Natl Cancer Inst 1990;82:561-9.

200.                      DongJY, HeK, WangP, QinLQ. Dietary fiber intake and risk of breast cancer: a meta-analysis of prospective cohort studies. Am J Clin Nutr 2011;94:900-5.

201.                      AuneD, ChanDS, GreenwoodDC, VieiraAR, RosenblattDA, et al. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol 2012;23:1394-402.

202.                      SteckSE, GaudetMM, EngSM, BrittonJA, TeitelbaumSL, et al. Cooked meat and risk of breast cancer--lifetime versus recent dietary intake. Epidemiology 2007;18:373-82.

203.                      ZhengW, GustafsonDR, SinhaR, CerhanJR, MooreD, et al. Well-done meat intake and the risk of breast cancer. J Natl Cancer Inst 1998;90:1724-9.

204.                      RohrmannS, LukasJung SU, LinseisenJ, PfauW. Dietary intake of meat and meat-derived heterocyclic aromatic amines and their correlation with DNA adducts in female breast tissue. Mutagenesis 2009;24:127-32.

205.                      LauberSN, AliS, GooderhamNJ. The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis 2004;25:2509-17.

206.                      GanmaaD, LiXM, WangJ, QinLQ, WangPY, et al. Incidence and mortality of testicular and prostatic cancers in relation to world dietary practices. Int J Cancer 2002;98:262-7.

207.                      QinLQ, XuJY, WangPY, KanekoT, HoshiK, et al. Milk consumption is a risk factor for prostate cancer: meta-analysis of case-control studies. Nutr Cancer 2004;48:22-7.

208.                      AuneD, NavarroRosenblatt DA, ChanDS, VieiraAR, VieiraR, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 2015;101:87-117.

209.                      JohanssonM, Van GuelpenB, VollsetSE, HultdinJ, BerghA, et al. One-carbon metabolism and prostate cancer risk: prospective investigation of seven circulating B vitamins and metabolites. Cancer Epidemiol Biomarkers Prev 2009;18:1538-43.

210.                      RichmanEL, KenfieldSA, StampferMJ, GiovannucciEL, ChanJM. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: incidence and survival. Cancer Prev Res. (Phila) 2011;4:2110-21.

211.                      BertuccioP, RosatoV, AndreanoA, FerraroniM, DecarliA, et al. Dietary patterns and gastric cancer risk: a systematic review and meta-analysis. Ann Oncol 2013;24:1450-8.

212.                      ZhuH, YangX, ZhangC, ZhuC, TaoG, et al. Red and processed meat intake is associated with higher gastric cancer risk: a meta-analysis of epidemiological observational studies. PLoS One 2013;8:e70955.

213.                      SongP, WuL, GuanW. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients 2015;7:9872-95.

214.                      LeiQ, ZhengH, BiJ, WangX, JiangT, et al. Whole grain intake reduces pancreatic cancer risk: a meta-analysis of observational studies. Medicine (Baltimore) 2016;95:e2747.

215.                      TaunkP, HechtE, Stolzenberg-SolomonR. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH-AARP diet and health cohort. Int J Cancer 2016;138:2172-89.

216.                      WuQJ, WuL, ZhengLQ, XuX, JiC, et al. Consumption of fruit and vegetables reduces risk of pancreatic cancer: evidence from epidemiological studies. Eur J Cancer Prev 2016;25:196-205.

217.                      Rock CL, Thomson C, Gansler T, et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J Clin. 2020;70(4):245-271. doi:10.3322/caac.21591

218.                      Rezac S., Kok C.R., Heermann M., Hutkins R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018;9:1785. doi: 10.3389/fmicb.2018.01785

219.                      An SY, Lee MS, Jeon JY, et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab. 2013;63(1-2):111‐119. doi:10.1159/000353583

220.                      Byun, M., Yu, O., Cha, Y. et al. Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: a double-blind, randomized, crossover, placebo-controlled clinical trial. Eur J Clin Nutr 70, 1116–1122 (2016) https://doi.org/10.1038/ejcn.2016.77

221.                      Dimidi E, Cox SR, Rossi M, Whelan K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients. 2019;11(8):1806. Published 2019 Aug 5. doi:10.3390/nu11081806

222.                      Vitali B, Minervini G, Rizzello CG, et al. Novel probiotic candidates for humans isolated from raw fruits and vegetables. Food Microbiol. 2012;31(1):116‐125. doi:10.1016/j.fm.2011.12.027

223.                      GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet. 2019 Jun 22;393(10190):e44] [published correction appears in Lancet. 2018 Nov 17;392(10160):2170]. Lancet. 2018;392(10159):1736–1788. doi:10.1016/S0140-6736(18)32203-7

224.                      GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet. 2019 Jun 22;393(10190):e44]. Lancet. 2018;392(10159):1859–1922. doi:10.1016/S0140-6736(18)32335-3

225.                      Akesson A, Larsson SC, Discacciati A, Wolk A. Low-risk diet and lifestyle habits in the primary prevention of myocardial infarction in men: a population-based prospective cohort study. J Am Coll Cardiol. 2014;64(13):1299-1306. doi:10.1016/j.jacc.2014.06.1190

226.                      Akesson A, Weismayer C, Newby PK, Wolk A. Combined effect of low-risk dietary and lifestyle behaviors in primary prevention of myocardial infarction in women. Arch Intern Med. 2007;167(19):2122-2127. doi:10.1001/archinte.167.19.2122

227.                      Li Y, Schoufour J, Wang DD, et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort study. BMJ. 2020; 368:l6669. Published 2020 Jan 8. doi:10.1136/bmj.l6669

228.                      Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Circulation. 2019 Sep 10;140(11):e649-e650] [published correction appears in Circulation. 2020 Jan 28;141(4):e60].Circulation. 2019;140(11):e596–e646. doi:10.1161/CIR.0000000000000678

229.                      Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults.J Am Heart Assoc. 2019;8(16):e012865. doi:10.1161/JAHA.119.012865

230.                      Satija A, Bhupathiraju SN, Spiegelman D, et al. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults.J Am Coll Cardiol. 2017;70(4):411–422. doi:10.1016/j.jacc.2017.05.047

231.                      Tong TYN, Appleby PN, Bradbury KE, et al. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: results from the prospective EPIC-Oxford study.BMJ. 2019;366:l4897. Published 2019 Sep 4. doi:10.1136/bmj.l4897

232.                      Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study [published correction appears in Am J Clin Nutr. 2014 Dec;100(6):1605].Am J Clin Nutr. 2014;100 Suppl 1:320S–8S. doi:10.3945/ajcn.113.071431

233.                      Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies [published online ahead of print, 2020 Feb 19].Eur J Epidemiol. 2020;10.1007/s10654-020-00607-6. doi:10.1007/s10654-020-00607-6

234.                      Virtanen HEK, Voutilainen S, Koskinen TT, et al. Dietary proteins and protein sources and risk of death: the Kuopio Ischaemic Heart Disease Risk Factor Study.Am J Clin Nutr. 2019;109(5):1462–1471. doi:10.1093/ajcn/nqz025

235.                      Campbell TC, Parpia B, Chen J. Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study.Am J Cardiol. 1998;82(10B):18T–21T. doi:10.1016/s0002-9149(98)00718-8

236.                      The American Heart Association. How does plant-forward (plant-based) eating benefit your heath? https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/how-does-plant-forward-eating-benefit-your-health Accessed 12 March 2020

237.                      Fraser GE, Shavlik DJ. Ten years of life: Is it a matter of choice? Arch Intern Med. 2001;161(13):1645–1652. doi:10.1001/archinte.161.13.1645

238.                      Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013;173(13):1230–1238. doi:10.1001/jamainternmed.2013.6473

239.                      Fraser GE. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists.Am J Clin Nutr. 1999;70(3 Suppl):532S–538S. doi:10.1093/ajcn/70.3.532s

240.                      Phillips RL, Lemon FR, Beeson WL, Kuzma JW. Coronary heart disease mortality among Seventh-Day Adventists with differing dietary habits: a preliminary report.Am J Clin Nutr. 1978;31(10 Suppl):S191–S198. doi:10.1093/ajcn/31.10.S191

241.                      Le LT, Sabaté J. Beyond meatless, the health effects of vegan diets: findings from the Adventist cohorts.Nutrients. 2014;6(6):2131–2147. Published 2014 May 27. doi:10.3390/nu6062131

242.                      Orlich MJ, Singh PN, Sabaté J, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2.JAMA Intern Med. 2013;173(13):1230–1238. doi:10.1001/jamainternmed.2013.6473

243.                      Haslam DE, Rehm CD, Song M, Hu FB, Zhang FF, Bhupathiraju SN. American Heart Association EPI | LIFESTYLE 2020 Scientific Sessions – Abstracts P510 and P512. March 5, 2020: Phoenix, AZ Press release at https://newsroom.heart.org/news/eating-more-plant-protein-and-dairy-instead-of-red-meat-may-improve-heart-health Accessed 12 March 2020

244.                      Akesson A, Larsson SC, Discacciati A, Wolk A. Low-risk diet and lifestyle habits in the primary prevention of myocardial infarction in men: a population-based prospective cohort study. J Am Coll Cardiol. 2014;64(13):1299-1306. doi:10.1016/j.jacc.2014.06.1190

245.                      Esselstyn CB Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD?.J Fam Pract. 2014;63(7):356–364b.

246.                      Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies [published online ahead of print, 2020 Feb 19]. Eur J Epidemiol. 2020;10.1007/s10654-020-00607-6. doi:10.1007/s10654-020-00607-6

NOTE: In early editions of the book, on page 48, it is stated that fish consumption is associated with increased risk of heart disease in Japanese populations, evidenced by reference 246 above. This statemnet was inaccurate and has been removed from later editions.

247.                      Carson JAS, Lichtenstein AH, Anderson CAM, et al. Dietary Cholesterol and Cardiovascular Risk: A Science Advisory From the American Heart Association. Circulation. 2020;141(3):e39-e53. doi:10.1161/CIR.0000000000000743

248.                      Brunner FJ, Waldeyer C, Ojeda F, et al. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Mulcanational Cardiovascular Risk Consortium [published correction appears in Lancet. 2019 Dec 6;:] [published correction appears in Lancet. 2020 Jan 4;395(10217):32].Lancet. 2019;394(10215):2173–2183. doi:10.1016/S0140-6736(19)32519-X

249.                      Robinson JG, Wang S, Smith BJ, Jacobson TA. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol. 2009;53(4):316–322. doi:10.1016/j.jacc.2008.10.024.

250.                      Go AS, Bauman MA, Coleman King SM, et al. An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention [published correction appears in Hypertension. 2014 Jun;63(6):e175]. Hypertension. 2014;63(4):878–885. doi:10.1161/HYP.0000000000000003

251.                      Public Health England. NDNS: assessment of dietary sodium in adults in England, 2014. 2016 https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-assessment-of-dietary-sodium-in-adults-in-england-2014 Accessed 19 April 2020

252.                      He FJ, Brinsden HC, MacGregor GA. Salt reduction in the United Kingdom: a successful experiment in public health. Journal of human hypertension. 2014;28(6):345-52

253.                      Wyness LA, Butriss JL, Stanner SA. Reducing the population’s sodium intake: the UK Food Standards Agency’s salt reduction programme. Public health nutrition. 2012;15(2):254- 61

254.                      Jenkins DJ, Kendall CW, Faulkner DA, et al. Long-term effects of a plant-based dietary portfolio of cholesterol-lowering foods on blood pressure. Eur J Clin Nutr. 2008;62(6):781–788. doi:10.1038/sj.ejcn.1602768

255.                      Evans CE, Greenwood DC, Threapleton DE, et al. Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. J Hypertens. 2015;33(5):897–911. doi:10.1097/HJH.0000000000000515

256.                      Alexander S, Ostfeld RJ, Allen K, Williams KA. A plant-based diet and hypertension. J Geriatr Cardiol. 2017;14(5):327–330. doi:10.11909/j.issn.1671-5411.2017.05.014

257.                      Kapil V, Khambata RS, Robertson A, Caulfield MJ, Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65(2):320-327. doi:10.1161/HYPERTENSIONAHA.114.04675

258.                      Li XS, Obeid S, Klingenberg R, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors.Eur Heart J. 2017;38(11):814–824. doi:10.1093/eurheartj/ehw582

259.                      Heianza Y, Ma W, DiDonato JA, et al. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk.J Am Coll Cardiol. 2020;75(7):763–772. doi:10.1016/j.jacc.2019.11.06

260.                      Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target.Nutrients. 2018;10(10):1398. Published 2018 Oct 1. doi:10.3390/nu10101398

261.                      Koeth RA, Lam-Galvez BR, Kirsop J, et al. l-Carnicane in omnivorous diets induces an atherogenic gut microbial pathway in humans.J Clin Invest. 2019;129(1):373–387. doi:10.1172/JCI94601

262.                      Park JE, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019;29(5):513–517. doi:10.1016/j.numecd.2019.02.003

263.                      Koeth RA, Lam-Galvez BR, Kirsop J, et al. l-Carnicane in omnivorous diets induces an atherogenic gut microbial pathway in humans.J Clin Invest. 2019;129(1):373–387. doi:10.1172/JCI94601

264.                      Park JE, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019;29(5):513–517. doi:10.1016/j.numecd.2019.02.003

265.                      Brandkvist M, Bjørngaard JH, Ødegård RA, Åsvold BO, Sund ER, Vie GÅ. Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT Study.BMJ. 2019;366:l4067. Published 2019 Jul 3. doi:10.1136/bmj.l4067

266.                      World Health Organisation. Fact-sheet: Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Accessed 15 March 2020

267.                      Kent LM, Worsley A. Does the prescriptive lifestyle of Seventh-day Adventists provide ‘immunity’ from the secular effects of changes in BMI?. Public Health Nutr. 2009;12(4):472–480. doi:10.1017/S1368980008002334

268.                      Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369–381. doi:10.1016/j.pcad.2013.10.016

269.                      Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults. Lancet. 2014 Aug 30;384(9945):755-65. doi: 10.1016/S0140-6736(14)60892-8. Epub 2014 Aug 13.

270.                      Luppino, Floriana S., et al. ‘Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies.’Archives of general psychiatry 67.3 (2010): 220-229.

271.                      Roberts, Robert E., et al. ‘Prospective association between obesity and depression: evidence from the Alameda County Study.’ International journal of obesity 27.4 (2003): 514-521.

272.                      Abeysekera KWM, Fernandes GS, Hammerton G, et al. Prevalence of steatosis and fibrosis in young adults in the UK: a population-based study. Lancet Gastroenterol Hepatol. 2020;5(3):295–305. doi:10.1016/S2468-1253(19)30419-4

273.                      Zezos P, Renner EL. Liver transplantation and non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20(42):15532–15538. doi:10.3748/wjg.v20.i42.15532

274.                      Ratjen I, Morze J, Enderle J, et al. Adherence to a plant-based diet in relation to adipose tissue volumes and liver fat content [published online ahead of print, 2020 May 26]. Am J Clin Nutr. 2020;nqaa119. doi:10.1093/ajcn/nqaa119

275.                      Alferink LJM, Erler NS, de Knegt RJ, et al. Adherence to a plant-based, high-fibre dietary pattern is related to regression of non-alcoholic fatty liver disease in an elderly population [published online ahead of print, 2020 Apr 22]. Eur J Epidemiol. 2020;10.1007/s10654-020-00627-2. doi:10.1007/s10654-020-00627-2

276.                      Diehl HA. Coronary risk reduction through intensive community-based lifestyle intervention: the Coronary Health Improvement Project. (CHIP) experience. Am J Cardiol. 1998 Nov 26;82(10B):83T-87T

277.                      Morton D, Rankin P, Kent L, Dysinger W. The Complete Health Improvement Program. (CHIP): History, Evaluation, and Outcomes.Am J Lifestyle Med. 2014;10(1):64–73.

278.                      Kahleova H, Dort S, Holubkov R, Barnard ND. A Plant-Based High-Carbohydrate, Low-Fat Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: The Role of Carbohydrates. Nutrients. 2018;10(9):1302. Published 2018 Sep 14. doi:10.3390/nu10091302

279.                      Wright N, Wilson L, Smith M, Duncan B, McHugh P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr Diabetes. 2017;7(3):e256. Published 2017 Mar 20. doi:10.1038/nutd.2017.3

280.                      Najjar RS, Feresin RG. Plant-Based Diets in the Reduction of Body Fat: Physiological Effects and Biochemical Insights. Nutrients. 2019;11(11):2712. Published 2019 Nov 8. doi:10.3390/nu11112712

281.                      Toth MJ, Poehlman ET. Sympathetic nervous system activity and resting metabolic rate in vegetarians. Metabolism. 1994;43(5):621–625. doi:10.1016/0026-0495(94)90205-4

282.                      Barnard ND, Scialli AR, Turner-McGrievy G, Lanou AJ, Glass J. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am J Med. 2005;118(9):991–997. doi:10.1016/j.amjmed.2005.03.039

283.                      Montalcini T, De Bonis D, Ferro Y, et al. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians. Nutrients. 2015;7(7):5933–5947. Published 2015 Jul 17. doi:10.3390/nu7075259

284.                      Craig WJ. Health effects of vegan diets. Am J Clin Nutr. 2009;89(5):1627S–1633S. doi:10.3945/ajcn.2009.26736N

285.                      Kahleova H, Dort S, Holubkov R, Barnard ND. A Plant-Based High-Carbohydrate, Low-Fat Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: The Role of Carbohydrates. Nutrients. 2018;10(9):1302. Published 2018 Sep 14. doi:10.3390/nu10091302

286.                      NCD Risk Factor Collaboration. (NCD-RisC) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants [published correction appears in Lancet. 2017 Feb 4;389(10068):e2]. Lancet. 2016;387(10027):1513–1530. doi:10.1016/S0140-6736(16)00618-8

287.                      Diabetes UK. Number of people with diabetes reached 4.7 million. https://www.diabetes.org.uk/about_us/news/new-stats-people-living-with-diabetes Accessed 15 March 2020

288.                      Loukine L, Waters C, Choi BC, Ellison J. Impact of diabetes mellitus on life expectancy and health-adjusted life expectancy in Canada. Popul Health Metr. 2012;10(1):7. Published 2012 Apr 24. doi:10.1186/1478-7954-10-7

289.                      Chen Z, Zuurmond MG, van der Schaft N, et al. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Eur J Epidemiol. 2018;33(9):883–893. doi:10.1007/s10654-018-0414-8

290.                      Kahleova H, Dort S, Holubkov R, Barnard ND. A Plant-Based High-Carbohydrate, Low-Fat Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: The Role of Carbohydrates. Nutrients. 2018;10(9):1302. Published 2018 Sep 14. doi:10.3390/nu10091302

291.                      Kahleova H, Fleeman R, Hlozkova A, Holubkov R, Barnard ND. A plant-based diet in overweight individuals in a 16-week randomized clinical trial: metabolic benefits of plant protein. Nutr Diabetes. 2018;8(1):58. Published 2018 Nov 2. doi:10.1038/s41387-018-0067-4

292.                      Pan A, Sun Q, Bernstein AM, Manson JE, Willett WC, Hu FB. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med. 2013;173(14):1328–1335. doi:10.1001/jamainternmed.2013.6633

293.                      Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence. Curr Atheroscler Rep. 2012;14(6):515–524. doi:10.1007/s11883-012-0282-8

294.                      Aune D, Ursin G, Veierød MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia. 2009;52(11):2277–2287. doi:10.1007/s00125-009-1481-x

295.                      InterAct Consortium, Bendinelli B, Palli D, et al. Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia. 2013;56(1):47–59. doi:10.1007/s00125-012-2718-7

296.                      McMacken M, Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J Geriatr Cardiol. 2017;14(5):342–354. doi:10.11909/j.issn.1671-5411.2017.05.009

297.                      Yang X, Li Y, Wang C, et al. Meat and fish intake and type 2 diabetes: dose-response meta-analysis of prospective cohort studies [published online ahead of print, 2020 Apr 14]. Diabetes Metab. 2020;S1262-3636(20)30055-0. doi:10.1016/j.diabet.2020.03.004

298.                      InterAct Consortium, Bendinelli B, Palli D, et al. Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia. 2013;56(1):47–59. doi:10.1007/s00125-012-2718-7

299.                      Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis. 2013;23(4):292–299. doi:10.1016/j.numecd.2011.07.004

300.                      Zheng JS, Sharp SJ, Imamura F, et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ. 2020;370:m2194. Published 2020 Jul 8. doi:10.1136/bmj.m2194

301.                      Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–1156. doi:10.1126/science.aao5774

302.                      Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intescanal inflammation. Environ Microbiol Rep. 2013;5(5):765–775. doi:10.1111/1758-2229.12079

303.                      Garber AJ, Abrahamson MJ, Barzilay JI, et al. CONSENSUS STATEMENT BY THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY ON THE COMPREHENSIVE TYPE 2 DIABETES MANAGEMENT ALGORITHM – 2019 EXECUTIVE SUMMARY [published correction appears in Endocr Pract. 2019 Feb;25(2):204]. Endocr Pract. 2019;25(1):69–100. doi:10.4158/CS-2018-0535

304.                      Thomas D.T., Erdman K.A., Burke L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016;116:501–528. doi: 10.1016/j.jand.2015.12.006.

305.                      Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and nonvegetarian dietary patterns.J Acad Nutr Diet. 2013;113(12):1610–1619. doi:10.1016/j.jand.2013.06.349

306.                      Barnard ND, Goldman DM, Loomis JF, et al. Plant-Based Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients. 2019;11(1):130. Published 2019 Jan 10. doi:10.3390/nu11010130

307.                      Boutros GH, Landry-Duval MA, Garzon M, Karelis AD. Is a vegan diet detrimental to endurance and muscle strength? [published online ahead of print, 2020 Apr 24]. Eur J Clin Nutr. 2020;10.1038/s41430-020-0639-y. doi:10.1038/s41430-020-0639-y

308.                      International Business Times. 23 Feb 2018. The modern epidemic of sadness destroying heart and soul cannot be solved with anti-depressants. https://www.ibtimes.co.uk/modern-epidemic-sadness-destroying-heart-soul-cannot-solved-anti-depressants-1663346 Accessed 16 March 2020

309.                      World Health Organisiation. Press release: Mental disorders affect one in four people. https://www.who.int/whr/2001/media_centre/press_release/en/ Accessed 16 March 2020

310.                      Katcher HI, Ferdowsian HR, Hoover VJ, Cohen JL, Barnard ND. A worksite vegan nutrition program is well-accepted and improves health-related quality of life and work productivity. Ann Nutr Metab. 2010;56(4):245–252. doi:10.1159/000288281

311.                      Toumpanakis A, Turnbull T, Alba-Barba I. Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diabetes Res Care. 2018;6(1):e000534. Published 2018 Oct 30. doi:10.1136/bmjdrc-2018-000534

312.                      Jacka FN, O’Neil A, Opie R, et al. A randomised controlled trial of dietary improvement for adults with major depression. (the ‘SMILES’ trial) [published correction appears in BMC Med. 2018 Dec 28;16(1):236]. BMC Med. 2017;15(1):23. Published 2017 Jan 30. doi:10.1186/s12916-017-0791-y

313.                      Beezhold BL, Johnston CS. Restriction of meat, fish, and poultry in omnivores improves mood: a pilot randomized controlled trial. Nutr J. 2012;11:9. Published 2012 Feb 14. doi:10.1186/1475-2891-11-9

314.                      van Dooren FE, Pouwer F, Schalkwijk CG, et al. Advanced Glycation End Product. (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study. Depress Anxiety. 2017;34(1):59–67. doi:10.1002/da.22527

315.                      Strasser B, Gostner JM, Fuchs D. Mood, food, and cognition: role of tryptophan and serotonin. Curr Opin Clin Nutr Metab Care. 2016;19(1):55–61. doi:10.1097/MCO.0000000000000237

316.                      Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, Breu JJ. Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. Am J Clin Nutr. 2003;77(1):128–132. doi:10.1093/ajcn/77.1.128

317.                      Beydoun MA, Beydoun HA, Boueiz A, Shroff MR, Zonderman AB. Antioxidant status and its association with elevated depressive symptoms among US adults: National Health and Nutrition Examination Surveys 2005-6. Br J Nutr. 2013;109(9):1714–1729. doi:10.1017/S0007114512003467

318.                      Gilbody S, Lightfoot T, Sheldon T. Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J Epidemiol Community Health. 2007;61(7):631–637. doi:10.1136/jech.2006.050385

319.                      Payne ME, Steck SE, George RR, Steffens DC. Fruit, vegetable, and antioxidant intakes are lower in older adults with depression. J Acad Nutr Diet. 2012;112(12):2022–2027. doi:10.1016/j.jand.2012.08.026

320.                      Mujcic R, J Oswald A. Evolution of Well-Being and Happiness After Increases in Consumption of Fruit and Vegetables. Am J Public Health. 2016;106(8):1504–1510. doi:10.2105/AJPH.2016.303260

321.                      Głąbska D, Guzek D, Groele B, Gutkowska K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients. 2020;12(1):115. Published 2020 Jan 1. doi:10.3390/nu12010115

322.                      Beezhold B, Radnitz C, Rinne A, DiMatteo J. Vegans report less stress and anxiety than omnivores. Nutr Neurosci. 2015 Oct;18(7):289-96. doi:10.1179/1476830514Y.0000000164

323.                      Lima-Ojeda JM, Rupprecht R, Baghai TC. ‘I Am I and My Bacterial Circumstances’: Linking Gut Microbiome, Neurodevelopment, and Depression. Front Psychiatry. 2017;8:153. Published 2017 Aug 22. doi:10.3389/fpsyt.2017.00153

324.                      Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays. 2014;36(10):940‐949. doi:10.1002/bies.201400071

325.                      Bagga D, Aigner CS, Reichert JL, et al. Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur J Nutr. 2019;58(5):1821–1827. doi:10.1007/s00394-018-1732-z

326.                      Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, Yusoff MSB, Wahid N, Abdullah MFIL, Zakaria N, Ong KL, Park YH, Liong MT. Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Benef Microbes. 2019 Apr 19;10(4):355-373. doi:10.3920/BM2018.0135. Epub 2019 Mar 18. PubMed PMID: 30882244.

327.                      Marotta A, Sarno E, Del Casale A, et al. Effects of Probiotics on Cognitive Reactivity, Mood, and Sleep Quality. Front Psychiatry. 2019;10:164. Published 2019 Mar 27. doi:10.3389/fpsyt.2019.00164

328.                      Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. (Berl) 2015 May;232(10):1793-801. doi:10.1007/s00213-014-3810-0. Epub 2014 Dec 3. PubMed PMID: 25449699; PubMed CentralPMCID: PMC4410136.

329.                      Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009 Mar 1;29(5):508-18. doi:10.1111/j.1365-2036.2008.03911.x. Epub 2008 Dec 2. PubMed PMID: 19053980.

330.                      The neuroactive potential of the human gut microbiota in quality of life and depression. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J. Nat Microbiol. 2019 Apr;4(4):623-632. doi: 10.1038/s41564-018-0337-x. Epub 2019 Feb 4.

331.                      Laicanen K, Mokkala K. Overall Dietary Quality Relates to Gut Microbiota Diversity and Abundance. Int J Mol Sci. 2019;20(8):1835. Published 2019 Apr 13. doi:10.3390/ijms20081835

332.                      Diabetologia. ‘Short-term study suggests vegan diet can boost gut microbes related to body weight, body composition and blood sugar control.’ ScienceDaily. ScienceDaily, 16 September 2019. <www.sciencedaily.com/releases/2019/09/190916185819.htm>.

333.                      Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?. Neurosci Lett. 2016;625:56‐63. doi:10.1016/j.neulet.2016.02.009

334.                      Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States. (2010-2050) estimated using the 2010 census. Neurology. 2013;80:1778-1783

335.                      Sherzai D, Sherzai A. Preventing Alzheimer’s: Our Most Urgent Health Care Priority. Am J Lifestyle Med. 2019;13(5):451‐461. Published 2019 May 9. doi:10.1177/1559827619843465

336.                      Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the ‘common’ neurologic disorders? Neurology. 2007 Jan 30;68(5):326-37. https://doi.org/10.1212/01.wnl.0000252807.38124.a3

337.                      Press release, Alzheimer’s Association, July 14th, 2019: Lifestyle Interventions Provide Maximum Memory Benefit When Combined, May Offset Elevated Alzheimer’s Risk Due to Genetics, Pollution. Available at https://www.alz.org/aaic/releases_2019/sunLIFESTYLE-jul14.asp Accessed May 17th, 2020

338.                      Ryan NS, Rossor MN. Defining and describing the pre-dementia stages of familial Alzheimer’s disease. Alzheimers Res Ther. 2011;3(5):29. Published 2011 Sep 27. doi:10.1186/alzrt91

339.                      Sherzai D, Sherzai A. Preventing Alzheimer’s: Our Most Urgent Health Care Priority. Am J Lifestyle Med. 2019;13(5):451‐461. Published 2019 May 9. doi:10.1177/1559827619843465

340.                      Wolters FJ, Ikram MA. Epidemiology of Vascular Dementia. Arterioscler Thromb Vasc Biol. 2019;39(8):1542-1549. doi:10.1161/ATVBAHA.119.311908

341.                      Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–1014. doi:10.1016/j.jalz.2014.11.009

342.                      Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28-36. PubMed PMID: 8327020

343.                      Wersching H, Duning T, Lohmann H, et al. Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology. 2010;74(13):1022–1029. doi:10.1212/WNL.0b013e3181d7b45b

344.                      Gu Y, Vorburger R, Scarmeas N, et al. Circulating inflammatory biomarkers in relation to brain structural measurements in a non-demented elderly population. Brain Behav Immun. 2017;65:150–160. doi:10.1016/j.bbi.2017.04.022

345.                      Lampe L, Zhang R, Beyer F, et al. Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann Neurol. 2019;85(2):194–203. doi:10.1002/ana.25396

346.                      Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52(2):168–174. doi:10.1002/ana.10265

347.                      Rosano C, Marsland AL, Gianaros PJ. Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging. Aging Dis. 2012;3(1):16–33.

348.                      Tangney CC, Li H, Wang Y, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–1416. doi:10.1212/WNL.0000000000000884

349.                      Gustaw-Rothenberg K. Dietary patterns associated with Alzheimer’s disease: population based study. Int J Environ Res Public Health. 2009;6(4):1335–1340. doi:10.3390/ijerph6041335

350.                      Mosconi L, Murray J, Davies M, et al. Nutrient intake and brain biomarkers of Alzheimer’s disease in at-risk cognitively normal individuals: a cross-sectional neuroimaging pilot study. BMJ Open. 2014;4(6):e004850. Published 2014 Jun 24. doi:10.1136/bmjopen-2014-004850

351.                      Perrone L, Grant WB. Observational and ecological studies of dietary advanced glycation end products in national diets and Alzheimer’s disease incidence and prevalence. J Alzheimers Dis. 2015;45(3):965–979. doi:10.3233/JAD-140720

Note: The references listed as (352-355) in the “Added Oils” section on page 60 were incorrectly numbered in early editions. Scroll down to numbers 360 and 361 for the correct citations on olive oils and health.

352.                      Foscolou A, Critselis E, Tyrovolas S, et al. The association of animal and plant protein with successful ageing: a combined analysis of MEDIS and ATTICA epidemiological studies [published online ahead of print, 2020 May 21]. Public Health Nutr. 2020;1-10. doi:10.1017/S1368980020000427

353.                      Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis [published online ahead of print, 2020 Mar 26]. Eur Respir J. 2020;2000547. doi:10.1183/13993003.00547-2020

354.                      Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area [published online ahead of print, 2020 Apr 22]. JAMA. 2020;e206775. doi:10.1001/jama.2020.6775

355.                      Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020;3(6):e2012270. Published 2020 Jun 1. doi:10.1001/jamanetworkopen.2020.12270

356.                      Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. Published 2020 May 22. doi:10.1136/bmj.m1985

357.                      Adams ML, Katz DL, Grandpre J. Updated estimates of chronic conditions affecting risk for complications from coronavirus disease, United States. Emerg Infect Dis. 2020 [cited 19 Aug 2020] https://doi.org/10.3201/eid2609.202117

358.                      World Economic Forum. Feb 2019. This is how many animals we eat each year. https://www.weforum.org/agenda/2019/02/chart-of-the-day-this-is-how-many-animals-we-eat-each-year/ Accessed 20 Jul 2020

359.                      Preventing the next pandemic - Zoonotic diseases and how to break the chain of transmission. The United Nations Environment Programme 06 July 2020. Accessed at https://www.unenvironment.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and15 July 2020

Note: For details on the healthy eating pattern recommendations of American Cancer Society (page 36 of the book), please see reference number 217 above

360.                      Schwingshackl L, Christoph M, Hoffmann G. Effects of olive oil on markers of inflammation and endothelial function: a systematic review and meta-analysis. Nutrients 2015;7:7651–75.

361.                      Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 2014;13:154.

362.                      The George Institute for Global Health. Salt levels in meat alternatives in Australia. (2010-2019), September 2019. https://www.georgeinstitute.org/sites/default/files/meat_alternatives_key_findings_report.pdfAvailable at Accessed 21 May 2020

363.                      Harris WS. Achieving optimal n-3 fatty acid status: the vegetarian’s challenge... or not. Am J Clin Nutr. 2014;100 Suppl 1:449S–52S. doi:10.3945/ajcn.113.071324

364.                      Sarter B, Kelsey KS, Schwartz TA, Harris WS. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clin Nutr. 2015;34(2):212–218. doi:10.1016/j.clnu.2014.03.003

365.                      Bourdon JA, Bazinet TM, Arnason TT, Kimpe LE, Blais JM, White PA. Polychlorinated biphenyls. (PCBs) contamination and aryl hydrocarbon receptor. (AhR) agonist activity of Omega-3 polyunsaturated fatty acid supplements: implications for daily intake of dioxins and PCBs. Food Chem Toxicol. 2010;48(11):3093–3097. doi:10.1016/j.fct.2010.07.051

366.                      Arterburn LM, Oken HA, Hoffman JP, et al. Bioequivalence of Docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids. 2007;42(11):1011–1024. doi:10.1007/s11745-007-3098-5

367.                      Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems Lancet. 2019;393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4

368.                      Huang H, Krishnan HB, Pham Q, Yu LL, Wang TT. Soy and Gut Microbiota: Interaction and Implication for Human Health. J Agric Food Chem. 2016;64(46):8695–8709. doi:10.1021/acs.jafc.6b03725

369.                      Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. Published 2016 Jun 14. doi:10.1136/bmj.i2716

370.                      Singh P, Arora A, Strand TA, et al. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823-836.e2. doi:10.1016/j.cgh.2017.06.037

371.                      Biesiekierski JR, Iven J. Non-coeliac gluten sensitivity: piecing the puzzle together. United European Gastroenterol J. 2015;3(2):160-165. doi:10.1177/2050640615578388

372.                      Cianferoni A. Wheat allergy: diagnosis and management. J Asthma Allergy. 2016;9:13-25. Published 2016 Jan 29. doi:10.2147/JAA.S81550

373.                      Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. Poole et al, BMJ 2017 doi: 10.1136/bmj.j5024.

374.                      Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems Lancet. 2019;393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4

375.                      Willett WC, Ludwig DS. Milk and Health. N Engl J Med. 2020;382(7):644–654. doi:10.1056/NEJMra1903547

376.                      Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutr. 2004;7(1A):227–243. doi:10.1079/phn2003590

377.                      Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and non-vegetarian dietary patterns. J Acad Nutr Diet. 2013;113(12):1610–1619. doi:10.1016/j.jand.2013.06.349

378.                      Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Nutr Diet. 2016;116(12):1970–1980. doi:10.1016/j.jand.2016.09.025

379.                      British Dietetic Association. (2017) British Dietetic Association confirms well-planned vegan diets can support healthy living in people of all ages. https://www.bda.uk.com/resource/british-dietetic-association-confirms-well-planned-vegan-diets-can-support-healthy-living-in-people-of-all-ages.html Accessed 19 March 2020

380.                      Boutros GH, Landry-Duval MA, Garzon M, Karelis AD. Is a vegan diet detrimental to endurance and muscle strength? [published online ahead of print, 2020 Apr 24]. Eur J Clin Nutr. 2020;10.1038/s41430-020-0639-y. doi:10.1038/s41430-020-0639-y

381.                      Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Nutr Diet. 2016;116(12):1970–1980. doi:10.1016/j.jand.2016.09.025

382.                      British Dietetic Association. (2017) British Dietetic Association confirms well-planned vegan diets can support healthy living in people of all ages. https://www.bda.uk.com/resource/british-dietetic-association-confirms-well-planned-vegan-diets-can-support-healthy-living-in-people-of-all-ages.html Accessed 19 March 2020

383.                      Phillips F. British Nutrition Federation. Vegetarian Nutrition. (2005) https://doi.org/10.1111/j.1467-3010.2005.00467.x

384.                      Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Batcano M. Plant-Based and Plant-Rich Diet Patterns during Gestation: Beneficial Effects and Possible Shortcomings. Adv Nutr. 2015;6(5):581–591. Published 2015 Sep 15. doi:10.3945/an.115.009126

385.                      Gundry S. (2017) The Plant Paradox: The Hidden Dangers in ‘Healthy’ Foods That Cause Disease and Weight Gain. New York, NY. Harper Collins.

386.                      Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–1473. doi:10.3945/ajcn.117.153148

387.                      Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–220.

388.                      De Mejía EG, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr. 2005;45(6):425–445. doi:10.1080/10408390591034445

389.                      Pusztai A, Grant G. Assessment of lectin inactivation by heat and digestion. Methods Mol Med. 1998;9:505–514. doi:10.1385/0-89603-396-1:505

390.                      Gibson PR. The evidence base for efficacy of the low FODMAP diet in irritable bowel syndrome: is it ready for prime time as a first-line therapy?. J Gastroenterol Hepatol. 2017;32 Suppl 1:32-35. doi:10.1111/jgh.13693

391.                      Etheridge C, Bond T, Derbyshire E (2018) Effects of Tea Consumption on Measures of Cardiovascular Disease: A Systematic Review of Meta-Analysis Studies and Randomised Controlled Trials. J Nutr Food Sci 8: 724. doi: 10.4172/2155-9600.1000724

392.                      Derbyshire E. Could we be overlooking a potential choline crisis in the United Kingdom? bmjnph 2019;2:86–89. doi:10.1136/bmjnph-2019-000037

393.                      Derbyshire E. Could we be overlooking a potential choline crisis in the United Kingdom? bmjnph 2019;2:86–89. doi:10.1136/bmjnph-2019-000037 (Competing interests updated to reflect consultancy work for the Meat Advisory Panel and British Egg Information Service, amongst others).

394.                      The Meat Advisory Panel, Jan 2017. Red Meat: Cutting through the confusion, a report by the Meat Advisory Panel. Available at https://meatandhealth.com/media/7687/MAP-report-IARC-findings-2016-AW-2426-.pdf Accessed 01 Oct 2020

395.                      BBC News, 29 Aug 2019. The brain nutrient vegans need to know about. Available at  https://www.bbc.co.uk/news/health-49509504 Accessed 01 Oct 2020